The role of arthroplasty in the rheumatoid shoulder

O papel da artroplastia no ombro reumatoide

Nádia de Oliveira 1, Manuel Gutierres 1,2,*

1 Faculty of Medicine of the University of Porto, Al Prof. Hernani Monteiro, 4200-319 Porto, Portugal

2 Serviço de Ortopedia do Hospital de S. João, Al Prof. Hernani Monteiro, 4200-319 Porto, Portugal

Source(s) of grants support:

The authors report no actual or potential financial payment or other benefits from any commercial party related to the subject of this article.

*Corresponding author:

Manuel Gutierres

Serviço de Ortopedia e Traumatologia do Hospital de S. João, Al Prof. Hernani Monteiro, 4200-319 Porto, Portugal

Email: manuel.gutierres@gmail.com

Short running title: Arthroplasty in the rheumatoid shoulder
The role of arthroplasty in the rheumatoid shoulder

Abstract
Rheumatoid arthritis is the most common inflammatory joint disease. It is characterized by a proliferative synovitis that symmetrically affects several joints and, if not promptly diagnosed and treated, leads to severe joint destruction. Shoulder involvement by rheumatoid arthritis is very common, affecting more than half of the patients and almost all patients with long-standing disease have their shoulder joints severely damaged. As a result of joint destruction patients present significant shoulder pain, upper limb impairment and, consequently, a decreased quality of life. Shoulder arthroplasty has shown to be a reliable treatment for patients with rheumatoid arthritis of the shoulder refractory to conventional therapy. Both significant pain relief and functional improvement have been delivered by this treatment modality and, therefore, patient’s quality of life is ameliorated. A careful preoperative assessment and an early referral to an orthopedic surgeon are paramount in order to properly plan joint replacement and avoid complications.

Keywords: Shoulder; Arthroplasty; arthritis, Rheumatoid.
Introduction

Rheumatoid arthritis (RA) is the most common inflammatory joint disease, affecting 0.5-1% of the world’s population \(^1, 2\). It is a chronic, systemic autoimmune disease characterized by symmetrical inflammatory polyarthritis that results in progressive joint destruction, deformity and disability \(^2, 3\).

Due to the polyarticular nature of RA, shoulder involvement is frequent, although generally occurring late in the disease process \(^4\). It is estimated that 65-90% of RA patients complain of shoulder pain \(^5\) and that 80-90% of patients with more than 15 years of disease duration have their shoulder joints severely affected \(^6\). As a result, patients have significant upper limb function impairment with a consequent decrease in their quality of life. Early detection and treatment of rheumatoid arthritis of the shoulder is therefore crucial.

The intention of the following paper is to review the role of arthroplasty as a therapeutic strategy in the treatment of the rheumatoid shoulder and to emphasize the importance of early referral to an orthopedic surgeon.

Search Strategy and Criteria

A comprehensive search of the US National Library of Medicine (PubMed) using the terms “shoulder”, “arthroplasty”, and “rheumatoid arthritis” was performed. Studies that involved at least 5 rheumatoid arthritis patients treated with shoulder arthroplasty, written in English or Portuguese, and published between the years 2000 and 2012 were included. Articles that solely presented mixed results in terms of etiology or did not include primary arthroplasties were excluded, as so were reports to which we had no access to full text.
Clinical Patterns

RA of the shoulder is characterized by a proliferative synovitis (pannus) that affects bone, cartilage and the periarticular soft tissues leading to bone loss, thinning of cartilage, muscle atrophy, fatty infiltration, tendinitis and bursitis. Patients may present with pain, swelling, loss of strength, stiffness and/or motion restriction.

The disease mainly affects the glenohumeral joint although involvement of the subacromial bursa and acromioclavicular joint may be present in an early stage. The sternoclavicular joint may be affected but rarely requires specific treatment. Failure of the rotator cuff usually occurs late in the disease process. Joint destruction most commonly follows the typical symmetrical pattern of RA.

Imaging

Considering the severity of morbidity caused by shoulder RA, early detection of inflammation is crucial for the prevention of irreversible damage. Imaging studies are essential for diagnosis and to guide treatment. They should be performed based on symptoms.

Conventional radiography is capable of detecting bone erosions, joint space narrowing, juxta-articular osteoporosis, cysts and subluxations but is unable to detect early disease manifestations such as inflammatory changes in soft tissues and the earliest stages of bone erosion.

Magnetic resonance imaging (MRI) and musculoskeletal ultrasound (US) are more sensitive than radiography in demonstrating synovial, cartilage and bone lesions. US can visualize effusion, bursitis and tendon integrity. MRI can be used to accurately evaluate synovitis, bone and cartilage damage, soft tissue and the rotator cuff. MRI provides good images of the glenoid fossa, information on muscle and
bone stock, and is the only exam capable of showing bone marrow edema. Hence, MRI is now the reference standard to assess the rheumatoid shoulder and a crucial exam for surgical planning.

Computed tomography (CT) was considered a reference standard in the assessment of bone erosions, it however visualizes soft tissue inadequately in comparison to MRI, and thus has been superseded by the latter. CT is useful when a precise assessment of bone destruction and stability is needed, such as preoperative evaluation.

Treatment

Management of shoulder RA should always start with appropriate pharmacological agents (analgesics, non-steroidal anti-inflammatory drugs, glucocorticoids and/or synthetic or biological disease-modifying antirheumatic drugs). Treatment should start as soon as RA is diagnosed or suspected. It has been shown that early and aggressive treatment is effective in minimizing inflammation, pain, stiffness and in preventing radiographic progression. Local glucocorticoid injections are the first-line local treatment in patients with shoulder symptoms but without joint space loss. If these measures fail, radiosynovectomy may be an effective option if performed early. When conservative management does not result in sufficient improvement, surgical procedures are the remaining treatment option. In the early stages of joint destruction surgical synovectomy is effective in pain reduction and joint function improvement. Arthroplasty should be considered when joint space loss is noted on radiographs or when pain and functional impairment cannot be controlled by other treatment modalities.
The surgical option

Surgical treatment of the rheumatoid shoulder has a dual role by preventing disease progression and treating pain and dysfunction. Decisions to perform surgery should always be based on imaging findings, degree of pain and disability and the patient’s wishes.

Surgical synovectomy and debridement is recommended when patients do not experience pain alleviation with 6 months of conventional therapy. Both the open and arthroscopic approaches are valid, although arthroscopic synovectomy is less invasive. Removal of the inflamed synovial lining decreases pain and swelling and slows disease progression. In addition mechanical irritants such as unstable cartilage flaps and loose bodies are removed by this modality 18, 20.

Shoulder arthroplasty is indicated when all the other treatment options fail to control symptoms or as soon as joint space loss is noted on radiographs 7. Shoulder joint replacement relieves pain and improves function, and consequently ameliorates quality of life 21.

Preoperative considerations

When planning joint replacement surgery the following aspects should be taken into account:

- RA is a polyarticular disease, affecting several joints simultaneously. It is essential to always consider the state of other joints in the surgical plan. Function of the limb may continue to be impaired after surgery if other joints of the same limb are affected 22, 23 thus there is usually an indication for arthroplasty of multiple ipsilateral joints. Whether to first replace the shoulder or the elbow is an unsolved problem 22. A one-stage surgery may be an option
when both ipsilateral elbow and shoulder arthroplasty is needed. Good results, matching those of a 2-stage surgery have been obtained, with the advantage of a single hospital stay and the use of less anesthetics. Additionally, patients undergoing lower limb surgery require the use of crutches postoperatively which increases shoulder load, therefore lower limb surgery should be performed before shoulder surgery.

- Age is an important factor in decision-making. Although shoulder arthroplasty is usually reserved for older patients, young patients may have their shoulder joints sufficiently affected requiring arthroplasty. The increased physical demands of younger patients, the need for prosthesis with a longer life span and the possibility of a future revision surgery are all aspects that influence the decision process.

- Bone quality in RA is poor due both to the underlying disease as well as to therapy with glucocorticoids. It is important not to delay surgery as inadequate bone stock limits surgical treatment and is associated to several complications. Furthermore, it is essential to correctly evaluate bone status preoperatively in order to properly select prosthesis.

- RA patients have an increased risk of infection compared to general population in part from the disease itself and in part from the immunosuppressive therapy. Risks and benefits of continuing or stopping medications during the perioperative time should be carefully balanced for both uncontrolled disease and treatment increase infection rate.

- RA of the shoulder joint causes thinning and fatty degeneration of the rotator cuff. Sperling et al evaluated the condition of the rotator cuff intraoperatively, and found that 45% of shoulders had thinning of the rotator cuff and 24% had a
full-thickness tear. Similar results were found by Trail and Nuttall. In their study, 35% of shoulders had a thin and atrophic rotator cuff, 47% had a tear, of which 24% were full-thickness. It is important to assess the integrity of the rotator cuff before surgery for cuff tears and fatty infiltration are associated to worse outcomes and appropriate techniques are available for these cases.

Total shoulder arthroplasty

Total shoulder arthroplasty (TSA) consists in the replacement of glenoid and the humeral head and is indicated in RA patients with an intact or reparable rotator cuff and adequate bone stock (figure 1). TSA has shown to provide satisfactory long-term pain relief and improvement in range of motion (ROM) and arm function. Sperling et al., in a retrospective study that included 195 TSA in rheumatoid patients, found that TSA significantly reduces pain and improves range of motion and is well tolerated with a survival rate of 89% at 20 years. Additionally, they showed that reductions in pain and gains in abduction were greater in patients with an intact rotator cuff and that these patients have a lower risk of revision (compared to those with a torn or thin rotator cuff). These findings are in accordance with previous results reported by Trail and Nuttall. They observed satisfactory pain relief as well as improvement in movement and strength, and good mid-term survival rates. An association of better results with an intact rotator cuff was also reported by these authors. Likewise, in an analysis of prognostic factors in arthroplasty of the rheumatoid shoulder a positive correlation was found between clinical outcome and the state of the rotator cuff. Good survivorship for TSA in the
long-term was also reported by Deshmukh et al. In their analysis TSA had a failure rate of 5.9% in RA patients. Clement et al. evaluated the outcomes of TSA in 48 rheumatoid shoulders. Constant Scores were significantly improved and survival rates were 91.7% at 5 years and 89% at 10 years. This study differs from the rest for it uses a metal-backed glenoid component, opposed to the all-polyethylene glenoids used in the other reports.

Hemiarthroplasty

Hemiarthroplasty (HA), consisting in a stemmed prosthesis placed on the humeral side, is indicated in patients with a massive cuff tear that has allowed superior migration or with insufficient bone stock for glenoid component fixation. An intact cartilaginous glenoid surface is required when performing HA. HA provides satisfactory long-term pain relief and gain in ROM.

Sperling et al. analyzed 109 rheumatoid patients with HA. They found significant pain reduction and improvement in ROM and a survivorship of 89% at 20 years. A similar 20 years survival rate has been previously reported by these authors.

A more recent study on risk factors for revision surgery has reproduced the survival rates reported by Sperling et al. A 91.8% survivorship at 20 years was found for HA in RA patients. Higher revision rates were found to be associated to younger age and higher body mass index.

Good outcomes in pain reduction and ROM improvement for HA were also reported by Gadea et al. A survival rate of 100% at ≥8 years was documented by these authors.
Total shoulder arthroplasty vs Hemiartroplasty

Different results have been obtained when comparing HA to TSA. Some studies have shown no difference in terms of pain relief and function improvement \(^{32-34, 46}\) and survival rates were found to be similar for both groups \(^{32}\). The same results were seen when comparing HA and TSA in young patients \(^{25}\). Contrarily, Pfahler et al. found better outcomes with TSA in comparison to HA in the rheumatoid patient \(^{47}\). A systematic review showed the same results \(^{39}\).

Whether to choose TSA or HA when there is an intact rotator cuff and adequate bone stock remains controversial. Both prosthesis have similar survival rates and deliver good outcomes in respect to pain and function. HA has been the preferred treatment for younger patients, although there seems to be no difference in outcomes when using either prosthesis. The risk of component loosening in the long-term and the alterations of bone stock complicating further surgery caused by TSA are the main reasons for this choice. Other reasons favoring HA over TSA may include the simpler and quicker technique in HA and lower costs \(^{27}\).

Surface replacement arthroplasty

Surface replacement arthroplasty involves the replacement of the damaged joint-bearing surfaces. With this technique anatomy is restored with minimal bone resection \(^{48}\).

Resurfacing of the humeral head has similar indications to those of stemmed arthroplasty \(^{49}\) and is suitable for patients with elbow prosthesis \(^{49, 50}\). Resurfacing should be avoided in patients with > 40% of humeral head loss or when the humeral bone is too soft to provide fixation \(^{49}\).

Good outcomes in terms of pain and function have been delivered to rheumatoid patients with shoulder surface replacement arthroplasty \(^{49-52}\).
Levy et al. reported on 75 surface replacement arthroplasties for the treatment of rheumatoid shoulder with a mean follow-up of 6.5 years. Pain relief and improvement in ROM was achieved with surface replacement arthroplasty and was comparable to that obtained by conventional TSA. Revision surgery was needed in only 3 patients, two of which underwent arthroplasty as a “limited goal” procedure. Their results are consistent with outcomes in a previous mid-term report by Levy and Copeland in 2001 where 41 rheumatoid shoulders underwent resurfacing arthroplasty. Reduction in pain and improvements in ROM were observed: 97.5% of patients considered their shoulder to be better or much better after surgery. Only one patient, that also underwent arthroplasty as a “limited goal procedure”, required revision surgery. A more recent study by the same authors with a mean follow-up of 8.6 years and involving 103 shoulders replicated these outcomes. In a report of 45 rheumatoid shoulders with surface replacement of the humeral head, all patients had substantial pain relief and improvement in function and therefore improvements in activities of daily living. No differences in outcome were observed in patients when analyzing the rotator cuff status. No complications were noted in this study. Similar outcomes in terms of pain and function were obtained by Thomas et al. in 2005. No revision surgery was required in the 5-year survival analysis.

Reverse total arthroplasty

Reverse total shoulder arthroplasty (RSA) consists in a convex articular surface that is fixed to the glenoid and a humeral stem with a concave proximal end. It is indicated in patients with massive irreparable cuff tears or as a revision arthroplasty for failed HA or TSA (figure 2).
RSA has delivered good pain relief and improvements in upper-limb function to RA patients54-57. A prospective study with a minimum follow-up of 2 years (average 36 months) involving 21 rheumatoid shoulders, all with rotator cuff deficiency, demonstrated significant improvement in pain, function and ROM. Clinical outcomes measures were not related to Larsen grade, atrophy of any of the rotator cuff muscles, degree of preoperative glenohumeral instability or degree of glenoid erosion. When questioned about their satisfaction, 85\% of patients rated the outcomes as good or excellent. Three patients required reoperation, two due to infection and one to a fracture after a fall54. Rittmeister and Kerchbaumer reported on eight shoulders that underwent reverse total arthroplasty for RA and an irreparable rotator cuff. The study had a mean follow-up of 53.4 months. All patients were satisfied with the outcome of surgery. They all had significant pain relief and functional improvement. Slight improvements in arm strength, mostly of arm flexion were observed. In this study 3 patients required revision surgery, all due to failure of acromial osteosynthesis and 2 of them required further surgery due to loosening56. A recent short-term study prospectively analyzed outcomes of reverse total arthroplasty on 17 severely destructed rheumatoid shoulders with an irreparable rotator cuff tear. Function was found to improve after surgery achieving 80.7\% of normal population’s for the Constant score. Although there were functional limitations, patients had marked pain relief, improvement in activities of daily living and reduction in the negative psychosocial effects of RA resulting in increased quality of life. A high degree of patient satisfaction was documented during the 2 year follow-up. None of the implants required revision surgery55. These findings replicate those of an earlier retrospective analysis57. In a recent study with a mean follow-up of 3.8 years and that involved 18
primary RSA, Constant scores and function were significantly improved. All patients, except for one, were satisfied or very satisfied with the results and no revision surgeries were required.58

\textbf{Complications}

As in all surgeries, shoulder arthroplasty is not free from complications. Component loosening, defined as implant migration or a periprosthetic radiolucent line of 2mm, is a common complication of shoulder arthroplasty, although only a few shoulders require revision. Aseptic loosening mostly occurs on the glenoid side and has been associated to poor bone stock, rotator cuff insufficiency, poor cementing technique and osteolysis due to polyethylene wear.28, 59-62

Glenoid erosion due to contact between the metal humeral head and the glenoid cavity is a frequent complication and exclusive to hemiarthroplasty. As a result, patients present pain that may be sufficient for them to require revision surgery.59

Notching of the scapular neck is a complication unique to RSA and results from repetitive impact of the humeral component against the scapula. It has shown to be the most common complication of RSA and is concerning, for bone loss could potentially lead to glenoid loosening, although its clinical significance remains controversial.53, 63

Complications common to all prosthesis include instability, infection, periprosthetic fractures, neural injuries, soft-tissue lesions and hematomas. Postoperative instability is one of the most frequently reported complications and has been associated to various factors, namely, malpositioning, inadequate glenosphere diameter, deltid dysfunction, poor subscapularis muscle, impingement and glenoid wear.28, 53, 61, 63
Deep infection most frequently develops secondary to patients’ immunosuppressive state and, although uncommon, is a devastating complication of shoulder joint replacement.\(^{28, 64}\)

Fractures may occur intra-operatively or postoperatively, and can involve both the humerus and the glenoid. Intraoperative fractures are mostly due to osteopenia and technical errors.\(^{28, 29, 63}\) Acromial fracture may occur in RSA but usually only require symptomatic treatment.\(^{29, 63}\)

Injuries to the brachial plexus, axillary and radial nerves are relatively common complications of shoulder arthroplasty but are usually spontaneously reversible, and result from surgical technique, patient positioning and excessive tension.\(^{28, 64}\)

Tears of the rotator cuff and rupture of the subscapularis tendon are relatively frequent and may compromise shoulder arthroplasty by placing the shoulder at risk of instability. Deltoid muscle dysfunction secondary to axillary nerve injury or iatrogenic detachment can severely compromise outcomes but is a rare complication when the extended deltopectoral approach is used.\(^{28, 64}\)

Postoperative hematomas may occur and be large enough to require reoperation for evacuation or drainage but are preventable by the use of drains, proper hemostasis and by delaying motion of the shoulder.\(^{64}\)

Minimizing complications and future considerations

With advances in prosthetic designs and refinements in surgical techniques shoulder arthroplasty has become a safe procedure, especially when there’s an appropriate patient assessment and proper surgical timing.
Glenoid component loosening is the most important concern of shoulder arthroplasty. Efforts have been made to improve glenoid fixation and, therefore, prevent loosening. In order to optimize congruency between the implant and the bone, reaming of the glenoid subchondral bone is advised \(^{28, 61, 65}\). In patients with glenoid bone deficiency, bone grafting can be used to improve component fixation \(^{61, 65, 66}\). Cemented all-polyethylene components are the current gold standard in TSA. Of the two available designs, keeled and pegged, the latter have shown to provide better postoperative results in terms of lucency \(^{67, 68}\). Cementing techniques have evolved over the years. The current recommendation is to inject the cement with a syringe and mechanically pressurize it. It is important to minimize subchondral bone removal, clean all blood and soft-tissue debris and meticulously dry the glenoid before cement insertion. Overstuffing should be avoided \(^{69}\). Cementless designs for total shoulder replacement, that theoretically offer many advantages over cemented prosthesis, have been developed but results have been discouraging \(^{28, 70}\). In the future, cementless implants designs using technology that encourage bone ingrowth may be an option \(^{68}\). Polyethylene wear has been identified as a major factor of glenoid loosening. Alternative bearing surfaces to the conventional metal-on-polyethylene bearing may be a solution to this problem. Metal-on-metal, ceramic-on-ceramic and ceramic-on-polyethylene bearings have been tested in vitro and used in lower limb arthroplasty and all have shown favorable wearing characteristics compared to metal-on-polyethylene bearing. However, their use has been limited due to real and potential difficulties \(^{71}\). Increasing material’s resistance to wear may be another possible approach to minimizing glenoid loosening. Cross-linking of polyethylene molecules by reducing the mobility between adjacent polyethylene chains increases the material’s resistance to deformation and wear. Highly cross-linked
polyethylene bearings have been used in lower limb arthroplasty with promising results.

Biologic resurfacing of the glenoid with soft-tissues like joint capsule, fascia lata, meniscal allograft and Achilles tendon allograft has been described to reduce glenoid wear and may be used in hemiarthroplasty to prevent glenoid erosion, particularly in the young patient.

Notching of the scapula can be minimized by placing the glenosphere in a distal position and by lateralizing the center of rotation.

In patients with ipsilateral shoulder and elbow implants short stemmed prosthesis may be used to overcome the difficulties posed by long stems.

Arthroplasty is most commonly performed by a deltopectoral approach which requires an incision of about 17 cm and the release of the subscapularis tendon. A new and less invasive approach, only requiring a 5 cm incision lateral to coracoid process and minimal periarticular soft-tissue disruption, is being developed. Advantages of this minimally invasive approach include reduced morbidity, faster recovery and improved outcome and cosmesis.

In addition to advances in the surgical field with the use of improved prosthetic designs and new materials and approaches, it is important to also improve the pharmacological treatment of shoulder RA in order to slow down disease progression, improve general health and decrease local destruction.

Conclusion

Shoulder arthroplasty is a reliable treatment option for patients with rheumatoid arthritis of the shoulder refractory to conventional treatment. The procedure significantly
reduces pain and improves function, and therefore ameliorates patient’s quality of life. Best results are achieved when patients are carefully assessed and when extensive bone loss is prevented by early referral to orthopaedic surgery.

References

46. Favard L, Katz D, Colmar M, Benkalfate T, Thomazeau H, and Emily S. Total shoulder arthroplasty - arthroplasty for glenohumeral arthropathies: results and complications after a minimum follow-up of 8 years according to the type of

68. Williams GR and Abboud JA. Total shoulder arthroplasty: glenoid component design: Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.] 2005; 14(1 Suppl S): 122S-128S.

Subtitles

Figure 1

A – Anteriorposterior radiograph of the right shoulder of a patient who underwent total shoulder arthroplasty.

B- Axillary view of the same patient.

Figure 2

A – Anteriorposterior radiograph of the right shoulder of a patient who underwent reverse total arthroplasty.

B- Axillary view of the same patient.
Figure 1 A
Figure 2 A
Acknowledgements

My first words of appreciation are addressed to my advisor, Professor Manuel Gutierres, for his time, guidance and advice.

I also thank all my friends for making this journey memorable. A special feeling of gratitude goes to Raquel, who shared most of the ups and downs of this thesis, for her patience and help, but mostly for her friendship.

I am eternally grateful to my parents and my brothers for their unconditional love and support. They have always been the best teachers and my inspiration.

To all those who have believed in me, thank you from the bottom of my heart!

“We are the masters of our fate”

Winston Churchill
Annexes
A Acta Reumatológica Portuguesa publica artigos originais sobre todos os temas da Reumatologia ou com ela relacionados. São também publicados artigos de revisão, casos clínicos, imagens, cartas ao editor e outros que se incluam na estrutura editorial da revista (recomendações, artigos sobre prática clínica reumatológica, notícias de reuniões de sociedades científicas, por ex.).

A Revista está indexada no PubMed/Medline e os artigos estão disponíveis online na íntegra, com acesso aberto e gratuito.

Os artigos devem preferencialmente ser redigidos em inglês. Os artigos em língua portuguesa também podem ser submetidos para apreciação.

O rigor e a exactidão dos conteúdos, assim como as opiniões expressas são da exclusiva responsabilidade dos autores.

Os autores devem declarar potenciais conflitos de interesse.

Os artigos não podem ter sido anteriormente publicados noutra revista. Quando o artigo é aceite para publicação é mandatório o envio via e-mail de documento digitalizado, assinado por todos os autores, com a transferência dos direitos de autor para a Acta Reumatológica Portuguesa.

Os artigos publicados ficarão propriedade da revista, não podendo ser reproduzidos, no todo ou em parte, sem autorização dos editores.

A aceitação dos originais enviados para publicação é sempre condicionada a avaliação pelos consultores editoriais. Nesta avaliação os artigos poderão ser:

a) aceites sem alterações;

b) aceites após modificações propostas pelos revisores;

c) recusados.

Em todos os casos os pareceres dos consultores serão integralmente comunicados aos autores.

Quando são propostas alterações, o autor deverá enviar via e-mail no prazo de 1 mês, uma carta ao editor e a cada um dos revisores respondendo a todas as questões colocadas e uma versão revista do artigo com as alterações inseridas destacadas com cor diferente.

Instruções aos Autores

Todos os manuscritos que não estejam em conformidade com as instruções que se seguem podem ser enviados para modificação antes de serem revistos pelos consultores.

Todos os trabalhos devem ser enviados por e-mail para: edtecnicarp@gmail.com.

Os manuscritos devem ser acompanhados de declaração de originalidade e de fedência dos direitos de propriedade do artigo, assinada por todos os autores, conforme minuta publicada em anexo.

O texto deve ser enviado em formato digital (e-mail), a dois espaços, com letra tamanho 12 e com margens não inferiores a 2,5 cm, em Word para Windows. Todas as páginas devem ser numeradas.

As imagens devem ser fornecidas independentemente do texto em formato JPEG ou TIFF.

Os textos devem ser organizados da seguinte forma:

Página 1

a) Título em português e inglês

b) Nome dos autores e respectiva afiliação

c) Serviço(s) ou organismo(s) onde o trabalho foi executado

d) Subsídio(s) ou bolsa(s) que contribuíram para a realização do trabalho

e) Morada e e-mail do autor responsável pela correspondência relativa ao manuscrito

f) Título breve para rodapé

Página 2

a) Título (sem autores)

b) Resumo em português e inglês, que para os artigos originais deve ser estruturado da seguinte forma: Objetivos, Material e Métodos, Resultados, Conclusões. O resumo dos artigos originais não deve exceder as 350 palavras e o dos casos clínicos as 180 palavras.

c) Palavras-chave em português e em inglês (Keywords)

Um máximo de 5 palavras-chave, utilizando a terminologia que consta na lista do Index Medicus: «Medical Subject Headings» (MeSH), deve seguir-se ao resumo.

Página 3 e seguintes

Artigos originais: O texto deve ser apresentado com os seguintes subtítulos: Introdução (incluindo Objetivos), Material e Métodos, Resultados, Discussão, Conclusões, Agradecimentos (se aplicável), Referências.

Os artigos originais não deverão exceder as 4.000 palavras, com um total de 6 figuras/tabelas e 60 referências.

O caso clínico: os subtítulos serão, Introdução, Caso clínico, Discussão, Referências.

O caso clínico não deve exceder as 2.000 palavras e 25 referências. Deve ser acompanhado de figuras ilustrativas. O número de tabelas/figuras não deve ser superior a 6.

A partir da segunda página, inclusive, todas as páginas devem ter em rodapé o título breve indicado na página 1.

Referências: As referências bibliográficas devem ser classificadas e numeradas por ordem de entrada no texto, em superscript e não entre parêntesis. As abreviaturas usadas na nomeação das revistas devem ser as utilizadas pelo Index Medicus.

As referências com 6 ou menos autores todos devem ser nomeados. Nas referências com 7 ou mais autores devem ser nomeados os 3 primeiros seguidos de et al.

Notas: Os números da página inicial e final devem ser totalmente apresentados (565-569 e não 565-9)
Não indicar o número da revista nem o mês da publicação.

Seguem-se alguns exemplos de como devem constar os vários tipos de referências:

- **Revista**
 Apelido e iniciais do(s) autor(es). Título do artigo. Nome da revista Ano; Volume; Páginas.
 Ex.: Hill J, Bird HA, Hopkins R, Lawton C, Wright V. Survey of satisfaction with care in a rheumatology outpa

- **Artigo publicado online** (Inserir DOI)

- **Capítulo de livro**
 Nome(s) e iniciais do(s) autor(es) do capítulo. Título do capítulo. In: Nome(s) e iniciais do(s) editor(es) médico(s). Título do livro. CIDADE: Nome da casa editora, ano de publicação: primeira a última página do capítulo.
 Ex.: Stewart AE. Hypercalcaemia resulting from medications. In: Favus MJ, ed. Primer on the Metabolic Bone Dis

- **Livro**
 Nome(s) e iniciais do(s) autor(es). Título do livro. CIDADE: Nome da casa editora, ano de publicação: página(s).

- **Documento eletrônico**
 Ex: Programa Nacional de Luta Contra a Tuberculose. Sistema de Vigilância (SVIG-TB). Direcção-Geral da Saú

As referências a trabalhos ainda não publicados, co
municações em reuniões, não publicadas em livros de resumos, ou comunicações pessoais devem ser citadas no texto e não como referências formais.

A exactidão e o rigor das referências são da responsabi
lidade do autor.

Tabelas: As tabelas a inserir devem ser assinaladas no texto em numeração romana e cumprir o limite descrito acima. Cada tabela deverá ser apresentada em folha se
parada, dactilografada a 2 espaços. Na parte superior de
evem apresentar um título suficiente mas informativo, de
modo a poder ser compreendido sem recurso ao texto. Na
parte inferior da tabela deve constar a explicação das abreviaturas utilizadas. Nas tabelas devem ser evitados os traços verticais e os traços horizontais, estes devem ser
vir apenas como separadores de títulos e subtítulos.

Figuras: As figuras a inserir devem ser assinaladas no texto em numeração árabe e cumprir o limite definido acima. As legendas das figuras devem ser dactilografadas a dois espaços numa folha separada, depois da bibliogra
fia. As figuras devem ser enviadas em suporte informáti
cico com ficheiros separados para cada figura, em forma
to JPEG ou TIFF

Editoriais: Os editoriais serão solicitados por convite do Editor. Os editoriais serão comentários sobre tópicos actuais ou sobre artigos publicados na revista. O texto dos
Acta Reumatologica Portuguesa publishes original articles, reviews, case reports, images and letters to the editor on all subjects related to Rheumatology.

The Journal is indexed on PubMed/Medline. The articles are available online with open and free access.

The accuracy of the manuscript contents as well as written opinions are of the exclusive responsibility of the author(s).

Published articles will remain property of the journal and cannot be reproduced, as a whole or as a part, without the authorization of the editor.

For accepted articles a statement signed by all authors transferring the copyright to Acta Reumatologica is mandatory and should be sent by e-mail. Authors have to disclose potential conflicts of interest.

The acceptance of articles is subject to the evaluation of the editorial board. Articles may be:

a) accepted without changes;
b) accepted after modifications suggested by the board;
c) refused.

All the comments made by the reviewers will be sent to the author.

When changes are proposed, the author should send reply letters to the editor and to each of the reviewers answering to all the raised questions. The author should also send a reviewed version of the manuscript with the changes highlighted in a different colour within 1 month.

Instructions to authors

Manuscripts not in accordance with the instructions may be sent for modification before review by the editorial board.

All manuscripts must be sent by e-mail to:
edtecnicarp@gmail.com

Manuscripts must be accompanied by a cover letter, signed by all authors, stating the name of the article, that it is an original work, that the authors held the copyright of the manuscript, that it does not represent any conflict of interest, and that they transfer the copyright to the journal (see form below).

Text should be sent in digital support by e-mail, typed double-spaced, type 12, with 1-inch margins, in Word for Windows. All pages must be sequentially numbered.

Images should be sent independently from the text in JPEG or TIFF file.

Manuscripts should be organized as explained below:

Page 1

a) Title in Portuguese and in English;
b) Authors’ names and affiliations;
c) Institution(s) to which the work should be attributed;
d) Source(s) of grants support;
e) Name, address and e-mail of the corresponding author
f) Short running title.

Page 2

a) Title (without authors)
b) Abstract

Abstract in English structured as follows for the original articles: Objectives; Patients and Methods; Results; Discussion; Conclusions. The abstract should not exceed 350 words for original articles and 180 words for case reports.
c) Keywords

A maximum of 5 keywords – must be MeSH terms – should be presented after the abstract.

Page 3 and following pages

Original papers: The text of original papers should be presented with the following subtitles: Introduction, Objectives, Patients and Methods, Results, Discussion, Conclusions, Acknowledgements, References.

Original papers should not exceed 4,000 words, 6 Tables/Figures and 60 references.

Case report: Subtitles for case reports should be: Introduction, Case report, Discussion, References.

A case report should not exceed 2,000 words and 25 references. It should present illustrative figures. The number of Tables/Figures should not exceed 6.

From the second page on, all pages should have a short title on footnote.

References: References should be cited by the numerical system, superscript and listed, in the order cited in the text. Journal titles are abbreviated in accordance with the style of Index Medicus.

List all authors when 6 or less; when 7 or more list only first 3 and add “et al”.

Do not abbreviate the page number (i.e. correct: 565-569 and not: 565-9).

The Journal number and the month of publication should not be presented.

References of unpublished work, presentations or personal observations should be inserted in the text (in parenthesis) and not as a “classical” or true reference.

Authors are responsible for the accuracy of the references.

Examples:

– Journal article

Name(s) and initials of author(s). Article title. Journal name Year; Volume or number: Page(s).

– Article published Online (insert DOI)

– Chapter in Book
 Name(s) and initials of author(s) of chapter. Chapter title. In: Name(s) and initials of editor(s). Book title. City: Name of publisher, year of publication: pages.

– Book
 Name(s) and initials of author(s). Book title. City: Name of publisher, year of publication: page(s).

– Online document

Tables: Tables should be cited in the text with Roman numerals. Each table should be double typed on a separate sheet, have a title and contain no vertical rulers. Horizontal lines should be used only as separators between titles and subtitles. Explain all abbreviations at the bottom.

The number of tables should be limited as described above.

Figures: Cite each figure in the text in consecutive order using Arabic numerals. Legends should be listed at the end of the manuscript, after the references, double typed. Send the figures in separate files to each figure in the format JPEG or TIFF.

The number of figures should be limited as described above.

Editorials: Editorials will be requested by the editor and will be comments on important issues or on articles published in the journal. Editorials should not exceed 1200 words, with a maximum of 15 references and no tables or figures.

Review articles: Review articles will be commissioned by the editor. However, authors interested in presenting a review article are welcomed to contact the editor.

Review articles should not exceed 4000 words, 6 tables/figures and 100 references.

Letters: Letters to the editor must be a comment on a journal article or a short clinical study or case report. They cannot exceed 600 words, a maximum of 10 references and one table or one figure.

Images in Rheumatology: Images of particularly interest can be submitted. They should contain a maximum of 4 figures, in JPEG or TIFF format. The accompanying text must have a maximum of 500 words.

Modifications and proofreading: Articles accepted subject to modifications, will be sent to the authors that will have 1 month to modify them according to suggestions. A letter should be written for each reviewer and the changes should be highlighted in the main manuscript with a different font color. Contributors will receive page proofs of the accepted papers for approval.

Cover Letter draft:
Send with manuscript to The Editor: edtecnicarp@gmail.com

The authors certify that the manuscript entitled ____________________________ (ref ARP______) is original, all data are based on their own research and that the manuscript does not violate copyright or privacy regulations. They further state that the manuscript hasn't been partly or totally published or submitted to publication elsewhere.

The authors declare that they hold total copyright for this paper and that they assume collective responsibility for its contents and also that any conflict of interest is acknowledged.

And submitting this paper, the authors transfer copyrights interests to Acta Reumatológica Portuguesa.

All authors must sign.

Name (capitals): ______________________________
Date:___
Signature: ______________________________________

The authors declare that they hold total copyright for this paper and that they assume collective responsibility for its contents and also that any conflict of interest is acknowledged. And submitting this paper, the authors transfer copyrights interests to Acta Reumatológica Portuguesa.

All authors must sign.

Name (capitals): ______________________________
Date:___
Signature: ______________________________________

The authors certify that the manuscript entitled ____________________________ (ref ARP______) is original, all data are based on their own research and that the manuscript does not violate copyright or privacy regulations. They further state that the manuscript hasn't been partly or totally published or submitted to publication elsewhere.

The authors declare that they hold total copyright for this paper and that they assume collective responsibility for its contents and also that any conflict of interest is acknowledged. And submitting this paper, the authors transfer copyrights interests to Acta Reumatológica Portuguesa.

All authors must sign.

Name (capitals): ______________________________
Date:___
Signature: ______________________________________